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AbNacL We study the storage of random p a m  by a perceptton above its slnage capacity 
ac, i.e. in the region whexe perfect storage bemmes impossible. We determine lk “al 
franion of leaming errors and lhe distribution of stabilities for different leaming rules in one- 
step replica symmetry breaking. Thenby we not only extend lk known replica symmelric 
results to values of Ute storage capacity beyond the AT line but dso show thac depnding on the 
learning rule. replica symmetry may be globally unstable already well below the AI line. As an 
example for possible implications we compare lk results for the typical basins of amaction of 
an extremely diluted attractor neural nefwork as given by replica q”e t ry  and one-slep replica 
symmeay breaking. 

1. Introduction 

In the storage problem for a perceptron one tries to find a synaptic vector J E BN that 
implements p random input-output mappings e” -+ u p  according to ap = sign(J.{”), 
/I = 1,. . . , p. One of the central results is that for N -+ 00 there is a sharp threshold ac 
of the ratio a = p / N  such that for a c ac the problem can be solved, whereas for a > ac 
there is no vector J realizing all mappings [ I ,  21. For a c a,, it is easy to show that the 
space of all possible solutions J is connected (even convex). For a > ac. since no vector 
J correctly realizes all the mappings, the interesting task is to find the J which minimizes 
the possible fraction of errors 131. Although difficult to prove exactly, it seems reasonable, 
that the solution space can now be disconnected, since different solutions make errors for 
different paltems. 

To average the various quantities of interest over the distribution of the random patterns 
forming the training set, one usually employs the replica trick. Eventually, this results 
in saddle-point integrals which necessitate the minimization of non-trivial functions with 
respect to appropriate order parameters carrying one or two replica indices. To find these 
extrema in the limit where the number of replicas goes to zero, one has to make an ansak 
for the replica structure of these order parameters. It is generally believed that a connected 
solution space (being the analogue of an ergodic dynamics in the related problem of spin- 
glasses) implies that replica symmetry (Rs) holds. Hence a replica-symmetric ansatz is 
justified for a < a,. To test the correctness of the replica-symmetric ansatz for a > ac 
one can determine the local stability of the corresponding saddle point. One finds that for 
some aAT > a, the replica-symmetric saddle point becomes locally unstable [3,4]. This is, 
however, not a sufficient criterion, since other saddle points with lower values of the function 
to be minimized may exist. Hence it remains unclear whether a replica-symmetric ansatz is 
correct for ac < a  < aAT. This question is of particular interest because replica-symmetric 
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results have been used for LY > LY, to calculate, for example, the basins of attraction of 
extremely diluted models L4.51. the generalization ability 161 and the storage capacity of 
multilayer networks 171. 

In the present paper we investigate the global stability of the replica-symmetric ansatz 
for perceptrons beyond the saturation limit aC by considering the alternative ansatz of o n e  
step replica symmetry breaking (RSB). This also provides approximate results for the region 
LY > LYAT. This has also been done recently for a special cost function by Erichsen and 
Theumann [SI. We extend the analysis to other cost functions, and calculate the minimal 
possible fraction of errors and the distribution of stabilities. The results show that depending 
on the cost function, replica symmetry breaking may or may not occur for (Y < UAT and 
hence the results using the replica-symmetric ansatz in this region are not reliable. As an 
example, we study the basins of attraction of an extremely diluted amactor network and 
compare the replica-symmetric results with those from the solution using one-step replica 
symmetry breaking. 

2. Model 

The network we want to consider is a perceptron consisting of N input neurons & connected 
to a single output neuron U by synaptic couplings Ji i = 1, . . . , N. All neurons can take on 
binary values +I,  -1. Given an input pattem <, the output is determined by the dynamics 

U = sign(h) 

(1) 

We say that a network stores the pattern if it satisfies the a priori given input-output 
relation (ep, uo), which is equivalent to AP = un J g P , ’ f i  > 0. Storage of noisy patterns 
can be achieved by demanding the stability Aj’ of pattern p to be larger than or equal to a 
value K 2 0 

A’ > K. (2) 

Learning here means finding synaptic couplings Ji that satisfy equation (2) for as many 
patterns as possible. Below a critical value LY, of the ratio LY = p / N ,  all patterns can be 
learnt perfectly and the space of networks which solve a given learning task has non-zero 
volume. As one approaches the storage capacity, this freedom in choice shrinks and finally 
leaves only a single network that solves the problem at hand. A further increase in the 
number of patterns to be stored leads to errors in learning. It seems reasonable to assume 
that the freedom in choice of network should increase with the number of errors and finally, 
in the limit of infinite storage, any network should solve the learning problem equally well, 
taking a random guess at the output. 

We want to consider learning as an optimization process. This means that we define 
a cost function which has as absolute minima networks with the desired properties (2). A 
learning rule corresponding to such a cost function would then be any dynamic process that 
minimizes the cost function. We will not address the question of this dynamic process and 
therefore use both words, learning rule and cost function, synonymously. Following [4], 
we consider three different cost functions of the form 

E = V(Ae). 
P 
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(i) Gardner-Demda cost function 

V(Ap) = B ( K  - A'). 

This cost function simply counts the number of errors. 

(ii) Perceptron cost function 

V(A') = ( K  - A ' ) ~ ( K  - A'). 
Here errors are linearly weighted with their distance to the stability threshold K. 

(iii) Adatron cost function 

V(A') = ( K  - A")%(K - A'). 

Errors are weighted quadratically with their distance to the target stability K. 

Since the different cost functions vanish for a < a,, they give, on average, the same 
solutions. They differ only for a > ac, so that it may be advantageous to choose different 
cost functions for different applications. In particular, it is clear from the very definition of 
the cost functions that the Gardner-Demda cost function produces as few errors as possible, 
irrespective of their stability, while the perceptron cost function leads to more errors with 
smaller deviations from the threshold stability K, and the adamn cost function leads to yet 
more errors (in fact, as many as for a random guess) with, again, less deviation from K .  

3. Free energy 

In order to study the performance of these learning d e s  one calculates their ground-state 
energy by considering the free energy in the limit j3 + W. 

1 
f(<') = - lim lim - logZ 

$+m N - m  N B  

1 - -  - lim lim - log! DJe-OE 
$-m N-m N B  

N 

DJ = n dJiS((J)' - N). 
i= I  

The spherical constraint J z  = N has been chosen to get rid of the invariance ( J ,  K) + 
(AJ,Ac). One calculates the free energy rather than the partition function itself because 
the former is assumed to be self-averaging, i.e. 

F E , )  = ( F ) p  

for almost any realization of the disorder tP. To perform the average over the pattems 
E' with the distribution P ( e r )  = S(#' - 1) + 8(ef + 1). we apply the replica trick 
(log Z) = lim.,o((Z") - l ) / n .  Using standard techniques [3,4] one finds 
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where 

In order to solve (Zn)  by saddlepoint integration for n + 0, one needs an ansatz for 

qab = q  (a # h )  qYb =,$ (a # b )  E'= E 

the order parameters. The simplest is the ansatz of replica symmetry, 

Note that for a c at there are several solutions of (1). so that we have q < 1 for B + W. 
For a ac, the solution with minimal fraction of emrs becomes unique, implying q + 1 
for + 03 with B( 1 - q)  = x = O( 1). With this ansatz one finds [3,4] 

where & is the minimum of the the square bracket for given I and Dz = 
d z / d G e x p  { -z2/2). 

In order to test the correcmess of the RS ansatz, one can calculate its local stability 
[3, 41, which is necessary but not sufficient. Here we test the global stability of the RS 
solution by using a one-step RSB ansatz and comparing the free energy of this more general 
ansatz with that of RS. Since fRS is maximized with respect to q. the RS solution must be 
rejected irrespective of its possible local stability if fRSB > fRS. 

In one-step RSB, the ansatz for the saddle point is of the form 

................. \ Qo Qo ... Q i  

where Qo is an m x m matrix with elements qe. and Ql is an m x m matrix with elements 
q1 on the off diagonals and 0 on the diagonal. For $Pb the ansatz is equivalent to that of 
qab and 

E'= E .  
Using standard techniques we arrive at the following result?.. For a < a,, the solution space 
iS COnneCted, RS is correct, and we find no RSB. For a > ac, the volume of solution space 
vanishes. Performing the limits 41 -+ 1 and p -+ 03, such that x = p( l  - 41) remains 
finite, brings us into the error regime of the network. We also make the ansatz that m scales 
with I/p, such that w = mp is finite, and find a self-consistent solution. 

The free energy is given by 
log(1 + wAq) 

2 wx qo + 
.ram I 2x(l + wAq) 

( f )  = min 
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with AX, minimizing the squate bracket for given values of zo and zl and Aq = 1 - qo. In 
the limit qo + I. this reduces to the RS result of [4]. 

Wc solved numerically the three-dimensional minimization with the results discussed in 
section 5. 

4. Distribution of pattern stabilities 

An interesting quantity to look at is the distribution of pattern stabilities, Afl. It provides 
information on the deviation of errors from the threshold stability K and thereby permits 
the calculation of the rate of errors and determines the dynamics of related attractor neural 
networks. The density &(A) of the distribution of stabilities is the relative volume of 
solution space with stability A 

&(A)= lim -/DJexp[-j?EV(A')]s(A-A"). 1 

P P+m Z 

Since the pattans am illdependently identically distributed random variables, we can set 
v = 1. If we mwwe that &(A) is self-avaaging, we can find its distribution by calculating 
its average valw @(,A) using the replica trick. 

atrwa We bra&& &nok the pattem average. The calculation is similar to that of the free 
energy except for tire average over pattern 1 [9, 101. 

We &id for &he dbpaibution of local stabilities 
lb-J44z-~J" A(A -io) I1 (5) 

j D i , e x p  -WX V(~O)+ Lr 

jQ .1  exp --wx V(AX,,) + I1 lh-J4fi-nm~= 
z1 

I [  
I [  a(& = 1 Dzg 

Tbe k m i n g  mor, e, is the fraction of unsatisfied inequalities (1). i.e. the number of 
patterns with ability A < K. We find them by integrating the distribution of stabilities: 

K 

e = $_, dA ~ ( 4 .  
&formarim en the 'badness' of errors, as contained in the distribution of stabilities, is 

The distribution of local stabilities has important implications for the performance of 
the network during retrieval. Let us consider an attractor neural network of binary neurons, 
which are updated according to equation (1). If we initialize. the network in a state &(to) 
with an overlap m(t0) = + xi c,'$(to) with the first pattem. then in the next time step this 
overlap will have evolved according to 

thereby IQg. 

with erf(x) = 1," dy exp (-y*). For smngly diluted networks [ 111 this equation can 
be iterated to determine the fixed points of the dynamics. A stable fixed point, m* # 0, 
characterizes the retrieval quality; an unstable one characterizes the minimal overlap of the 
initial state which is required for retrieval. Hence p ( A )  determines the basin of attraction 
in strongly diluted nets [9]. 
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5. Discussion 

In this paragraph we will evaluate~the one-step RSB expressions of the last two sections for 
specific cost functions. We thereby test the global stability of the RS approximation in the 
regime where it is locally stable and find results also in the regime of local instability of 
the RS ansatz. For the three cost functions to be considered the lines of instability of the RS 
ansatz are shown in figure 1. The leftmost line is the line of storage capacity. 

Figure 1. Storage CapSCiIy and A’ lines, n e  lefrmost line is the critical line of storage capacity. 
Next. U) the right, is the line of local instability of the RS matz for the Gardner-Derrida cost 
function; the righunorr line is that for Lhe Percepfron cost function. The line of instability for 
the Adawn cost function is the Y = 0 axis. 

5.1. Gardner-Derrida cost function 

Evaluating the free energy, 

where A = K - ZO& and H ( x )  = J,” Dy, and comparing RS and RSB results, as done in 
figure 2, one finds that RS is globally unstable for ci > cr,, independent of its local stability. 
This implies that, above saturation, the solution space is disconnected. 

Note that for the Gardner-Demda learning rule the free energy is equal to the rate of 
errors, since the cost function simply counts the number of errors. 

The transition to RSB at (Y = cr, can also be seen by looking at the order parameter 40. 
It measures the average overlap of solutions from different regions of solution space. For 
small storage rates, it has the behaviour shown in figure 3. For a > uc, qo branches off 
continuously from the replica-symmetric value qo = q1 = 1. In the limit of infinite storage, 
LY + m, we expect qo to approach 0 since, in this case, any network, i.e. any vector of 
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Figure 2. Rate of errors for the Gardner-Derrida leaming rule. Lower cwes compand to RS 
and upper curves 10 RSB. The mows indice  the points of local insrability of lhe RS solnth. 

couplings, should do equally well on the given problem, just as well as'by taking a random 
guess at the output. However, this k n o t  what we find. We solved self-consistently the 
saddle-point equations in the limit CY -+ 00 with the ansatz 

x - + o  w x + o  w ( l - q o ) - + w  for(Y-+0O 

and find the following behaviour of the order parameters: 

2 where CO = - exp ( -~ ' /2)  and CI = & exp { - K ~ / Z ] .  Since the smailest overlap scale 
qo of a correct RSB solution should tend to zero as (Y -+ 00, we conclude that one-step 
RSB is incorrect at high storage levels. We have not studied at what point a transition to 
higher-order RSB occurs. 

3 f i  
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Evaluating the distribution of stabilities, the numerator in (4) becomes 
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where, again, A = K - ZO&. In the region where RS is locally stable, we do not find 
numerically an RSB solution different from the RS solution. Thus the RS solution is globally 
stable below the AT line. Our RSB yields firstly results in the regime above the AT line. But 
we have not tested either local or global stability of the onestep RSB solution. 

Since the difference in free energy of the RS and RSB solutions is of the order of low4, 
we show only the behaviour of the order parameter qo in figure 6 which expresses the degree 
of symmetry breaking. 

The numerator of the distribution of local stabilities (4) takes the form 

rardnu-DelrAda BO& 

- 
. 
- 
. 
- 
. 
- 

- 

b. I \ I 

Fgum 6. Order parameter 40 shows RSB for the pcrcepvon cost function. Armws again indicate 
the points of local instability of the RS approximation. 
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0.G 

~ r.L . > L , I  I r. .16W 

. 

wx 
log(l + wAqf 

2wx qo + 
1.40.~' I 2r(l + wAq)  

(f) = min 

Similarly to the perceptron cost function, we cannot find an RSB solution of the adatron 
learning rule below the AT line where the RS results are stable. Since for this learning rule 
the AT line lies along the K = 0 axis, we do not find RSB at all. 
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F i r e  8. The rate of m r s  fa the perapvon leaming rule. The arrows indicate the kT Line. 

6. Conclusions 

In the regime where perfect storage becomes impossible, we have studied the perceptron 
using three different leaming rules formulated as the minimization of the cost function. 
We have tested the global stability of the replica-symmetric ansatz by considering a one- 
step replica symmetry breaking ansatz. This amounts to testing the connectedness of the 
solution space. We have found that for the Gardner-Derrida cost function, the replica 
symmetry is globally unstable above the critical line of storage U~(K), even where it is 
locally stable. The minimal number of errors and the distribution of local stabilities are 
markedly modified by replica symmetry breaking (see figures 2 and 4), while the retrieval 
properties of the corresponding attractor neural network are only slightly afiected (figure 5). 
For the perceptron and adatron cost functions, on the other hand, local stability of the replica 
symmetric ansatz implies global stability. For the latter this should not come as a surprise 
since the cost function is a convex function of the couplings, as can be verified easily by 
calculating the matrix of second derivatives. This implies that local minima (with respect 
to the J's) are also global minima.i For the perceptron cost function, our calculation in 
one-step replica symmetry breaking provides approximate results at values of the storage 
ratio above the AT line (figures 7 and 8). 

We suppose that the qualitatively different behaviour of the learning rules comes from 
the discreteness of the Gardner-Denida cost function which takes on values 0, . . . , p only, 
while the other cost functions are continuous. A similar situation occurs in the theory of 
annealed dilution in neural networks with continuous weights [12, 131. If all couplings are 
present, replica symmetry holds for all a < ac. If, however, a certain degree of dilution 
is assumed, discrete variables, cij = 0.1, describing the missing bonds enter and replica 
symmetry breaks down. It is intuitive that, although replica symmetry breaking can occur 
with both discrete and continuous degrees of freedom, it is more natural in the former case, 
since the associated breaking of the solution space into different disconnected pieces is 
much more likely. 

t We lhank Lhe referees for pointing this out to us. 
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